

Zürcher Hochschule für Angewandte Wissenschaften Institut für Umwelt und Natürliche Ressourcen

ÖKOBILANZIERUNG DER HYDROTHERMALEN CARBONISIERUNG VON KLÄRSCHLAMM

Matthias Stucki, Lea Eymann

8. Mai 2014, IFAT Messe, München

Eckdaten des Projekts

Thema des Gesamtprojekts: HTC zur Trocknung von
 Klärschlamm im industriellen Maßstab und P-Rückgewinnung

• Industriepartner: AVA-CO2 Schweiz

 Finanzierung: Bundesamt für Umwelt BAFU (Technologieförderung)

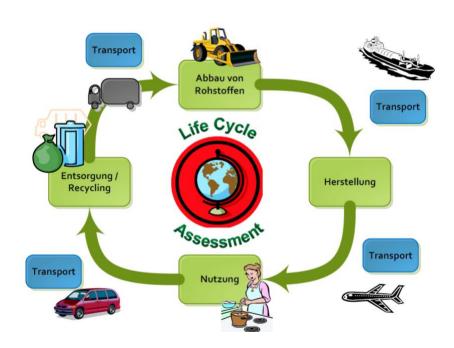
Zeitrahmen: 2011-2013

Inhalt des Projekts

- Behandlung des HTC-Prozesswassers: Mittlere bis sehr gute biologische
 Abbaubarkeit der organischen Fracht des HTC-Prozesswassers im Batchversuch
- 2. Mechanische Entwässerbarkeit: Vorteil von HTC für eine verbesserte Fest-Flüssigtrennung wurde nachgewiesen
- 3. Energetischen Verwertungsmöglichkeiten von HTC-Kohle: Erfolgreiche Versuche zur Mitverbrennung der HTC-Kohle in einer SVA und in einem Zementwerk
- 4. Rückgewinnung von Phosphor und Schwermetallen: Die tiefere Alkalinität der

HTC-Asche verglichen zur KS-Asche erleichtert die Rückgewinnung von Schwermetallen und Phosphor

5. Ökobilanzierung der hydrothermalen Karbonisierung von Klärschlamm


Ziel der Ökobilanzierung

Vergleich des HTC-Prozesses mit weiteren Verfahren der Klärschlammentsorgung aus Umweltsicht

Ökobilanzen

- Standardisierte Methode für die Bestimmung der Auswirkungen von Produkten / Dienstleistungen / Prozessen auf die Umwelt
- Life Cycle Assessment (LCA):
 Gesamter Lebenszyklus «von der Wiege bis zur Bahre»
- Ökobilanzierung erfolgte mit der Software SimaPro

Varianten der Klärschlammentsorgung mit HTC

- Faulung, HTC-Verfahren und Monoverbrennung der HTC-Kohle mit Phosphorrückgewinnung
- Faulung, HTC-Verfahren und Verbrennung der HTC-Kohle in Zementindustrie
- Faulung, HTC-Verfahren und Verbrennung der HTC-Kohle in Braunkohlekraftwerk

Wärme für HTC-Prozess: Biogas / alternative Szenarien für Nutzung von Abwärme oder Erdgas

Varianten der Klärschlammentsorgung ohne HTC

- Faulung, Monoverbrennung und Phosphor-Rückgewinnung auf dem Gelände der ARA, Trocknung mit Abwärme
- Keine Faulung, Monoverbrennung und Phosphor-Rückgewinnung auf dem Gelände der ARA, Trocknung mit Abwärme
- Faulung, Entsorgung des Schlamms in einer Kehrichtverbrennungsanlage (KVA)
- Faulung, Schlammentsorgung in der Zementindustrie, Trocknung auf ARA mit Wärmetauscher
- Faulung, Schlammentsorgung in der Zementindustrie,
 Trocknung im Zementwerk mit Abwärme

ARA Luzern (REAL)

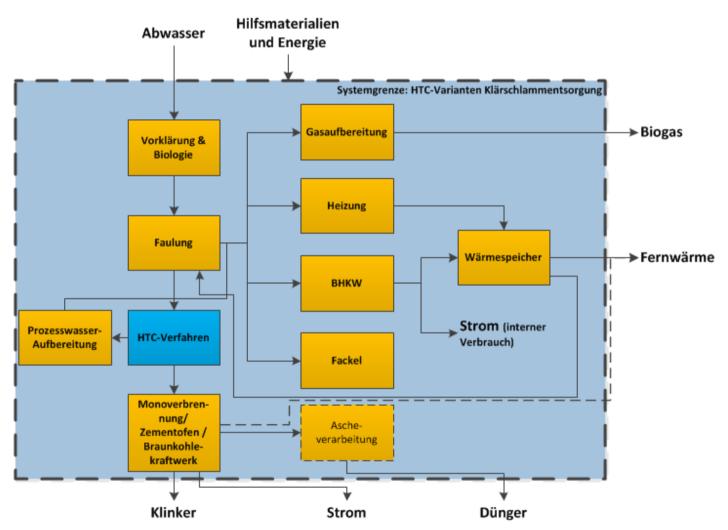
- Die betrachteten Klärschlamm-Entsorgungswege beziehen sich auf den Standort der REAL (Kt. Luzern)
- Die Abwasserreinigungsanlage reinigt seit 1974 das Abwasser von 180'000 Einwohnern und vielen Unternehmen aus 8 Gemeinden
- Fernwärme-Abgabe ist auf 12.2 MJ/EW beschränkt

Funktionelle Einheit (Bezugsgrösse):

«Entsorgung von einem Einwohnerwert (EW) Klärschlamm im Einzugsgebiet REAL, was einer jährlichen Klärschlammfracht mit einem Trockensubstanzgehalt von 27.5 kg TS entspricht.»

Datenquellen

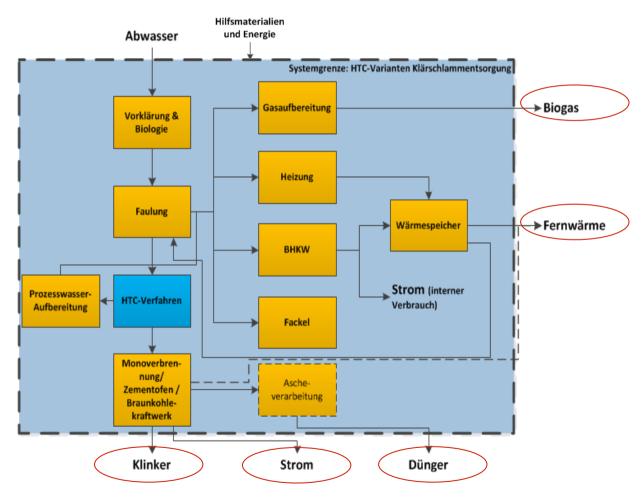
1. Für die Ökobilanzierung des HTC-Verfahrens:


- AVA-CO2 Schweiz AG: Vordergrunddaten (Energieverbrauch, Materialbedarf, Infrastruktur, Prozesswasserzusammensetzung)
- ecoinvent v2.2 Datenbank: Hintergrunddaten (ca. 4'000 Datensätze zu Strom-Mix, Transport, Chemikalien, mineralischen Rohstoffen, Entsorgung u.v.m)

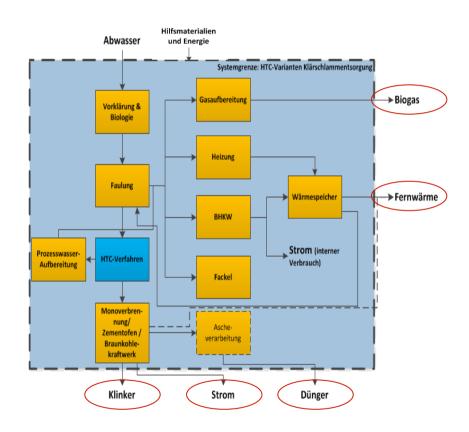
2. Für die Ökobilanzierung der Entsorgungswege ohne HTC:

 Studie von Bättig et al. (2011) für den Standort der ARA REAL in Emmen (Kt. Luzern)

zh


Systemgrenze der Klärschlammentsorgungsvarianten mit HTC

Gutschriften (1/2)

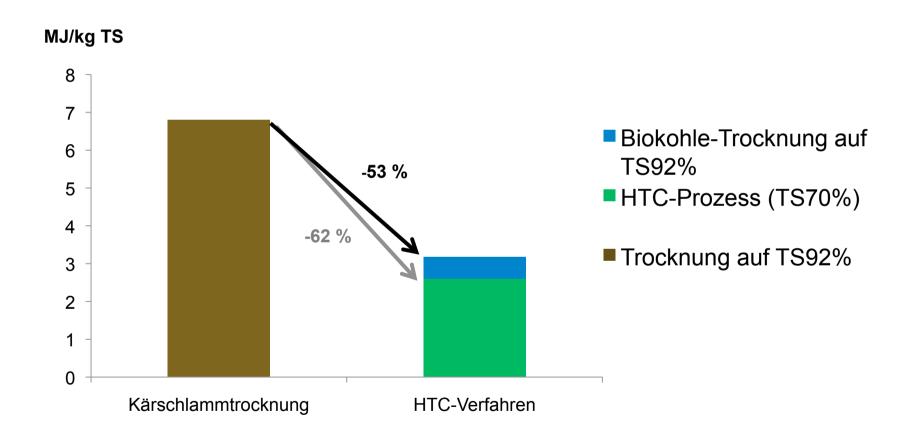

Outputs:

Die Produkte der Klärschlammentso r-gung können konventionelle Produkte substituieren

Gutschriften (2/2)

- Biogas ersetzt Erdgas
- Fernwärme ersetzt Wärme aus Erdgas
- Dünger aus Phosphor-Rückgewinnung ersetzt konventionellen Dünger
- HTC-Kohle in Braunkohlekraftwerk reduziert den Einsatz fossiler Braunkohle und vermeidet fossile Kohlendioxidemissionen
- HTC-Kohle in Zementwerkt ersetzt fossile
 Brennstoffe und Rohmaterial

Zürcher Hochschule für Angewandte Wissenschaften

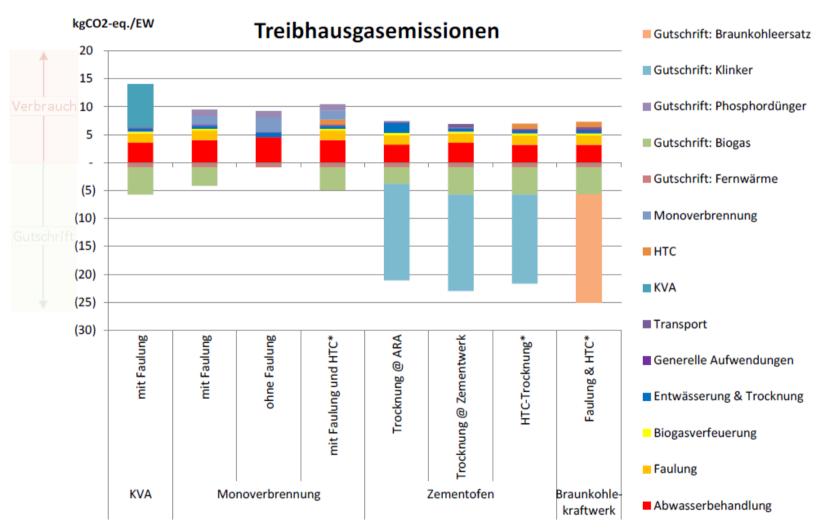


Resultate

Wärmeverbrauch der Klärschlammtrocknung (TS 92%)

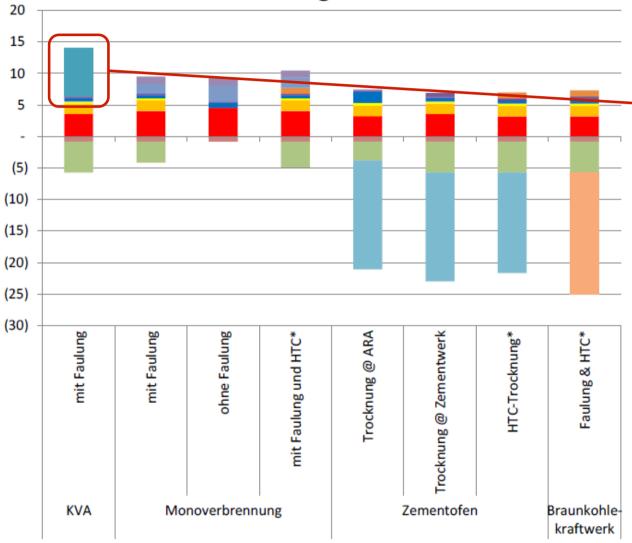
Zürcher Fachhochschule

1



Umweltindikatoren

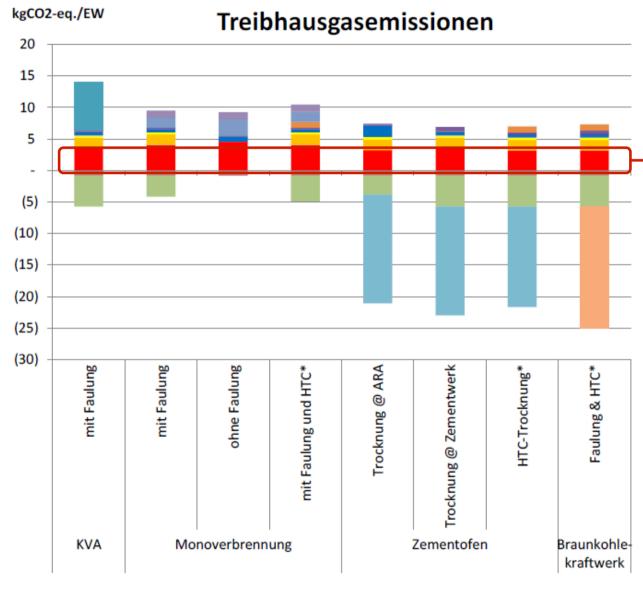
Indikator	Einheit
Kumulierter Energieaufwand nicht erneuerbarer Energieträger	MJ-eq.
Treibhauspotenzial	kg CO ₂ -eq.
Überdüngungspotenzial	kg PO ₄ -eq
Humantoxizitätspotenzial	kg 1,4-DCB-eq
Aquatisches und terrestrisches Ökotoxizitätspotenzial	kg 1,4-DCB.eq.
Volumen hochradioaktiver Abfälle	m ³
Umweltbelastungspunkte (Methode der ökologischen Knappheit)	UBP 06
Verbrauch abiotischer Ressourcen (kumulierter Exergieaufwand von	MJ-eq.
Metallen und Mineralien)	



Zürcher Hochschule für Angewandte Wissenschaften

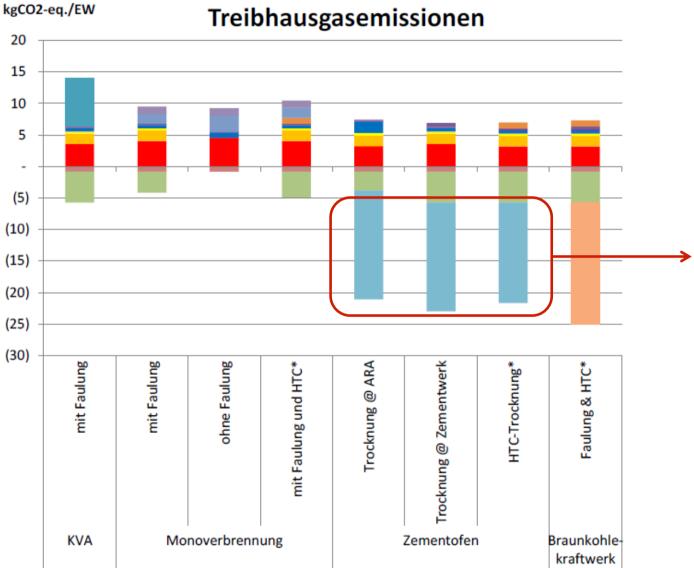
KVA:

→ Ins Gewicht fällt v.a. Zement-verbrauch für die Verfestigung deponierter Reststoffe

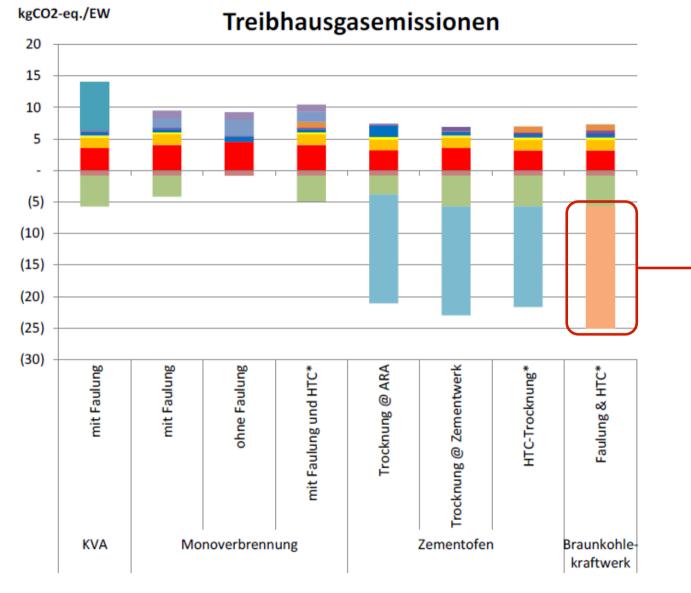

kgCO2-eq./EW

Abwasserbehandlung

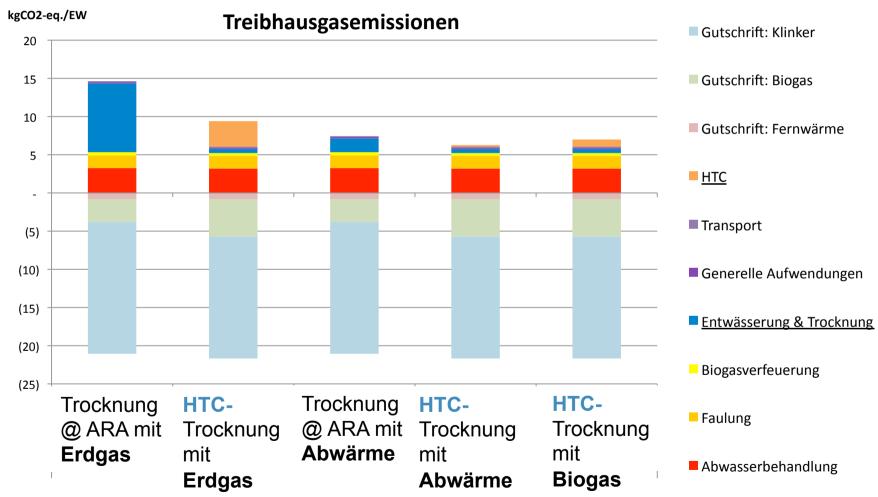
→ Insbesondere Eisen(III)-chlorid ist relevant



Gutschrift Biogas



Gutschrift Klinker



Gutschrift Braunkohle -ersatz

Alternative Energieträger für Klärschlamm-Trocknung und HTC bei anschließender Entsorgung im Zementofen

Schlussfolgerungen

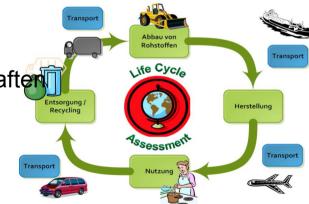
- HTC-Kohle aus Klärschlamm ist ein wertvolles Produkt, mit dem fossile Energieträger ersetzt werden können
- Der Energieverbrauch für das HTC-Verfahren ist geringer als für eine herkömmliche Klärschlammtrocknung
 - Erfolgt die Klärschlamm-Trocknung mit fossilen Energieträgern, dann schneidet HTC aus Umweltsicht deutlich besser ab
 - Wird für HTC Abwärme verwendet, schneidet die Technologie am vorteilhaftes-ten ab
- 3. HTC-Entsorgungswege würden noch besser abschneiden, wenn eine P-Rückgewinnung erfolgt (z.B. mit Sandabscheidung):
 - Technisch machbar
 - Aufgrund fehlender Daten keine Ökobilanzierung für ein entsprechendes Szenario

Zürcher Hochschule für Angewandte Wissenschaften

Vielen Dank für Ihre Aufmerksamkeit!

Schlussbericht erhältlich unter: www.iunr.zhaw.ch/erneuerbareenergien -> HTC

Life Cycle Assessment @ ZHAW


Matthias Stucki, Lea Eymann

ZHAW Zürcher Hochschule für Angewandte Wissenschafter Institut für Umwelt und Natürliche Ressourcen

Grüental, Postfach, CH-8820 Wädenswil

Phone: +41 58 934 57 19

E-Mail: matthias.stucki@zhaw.ch / lea.eymann@zhaw.ch

